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Abstract

Using continuation methods from the integrable Ablowitz-Ladik lattice, we have
studied the structure of numerically exact mobile discrete breathers in the standard
Discrete Nonlinear Schrödinger equation. We show that, away from that integrable
limit, the mobile pulse is dressed by a background of resonant plane waves with
wavevectors given by a certain selection rule. This background is seen to be essential
for supporting mobile localization in the absence of integrability. We show how
the variations of the localized pulse energy during its motion are balanced by the
interaction with this background, allowing the localization mobility along the lattice.
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1 Introduction

The phenomenon of intrinsic localization (collapse to self-localized states) due
to nonlinearity in discrete systems governed by Schrödinger equations is of
fundamental interest in Nonlinear Physics [1,2], and is the subject of current
active experimental research in several areas like nonlinear optics [3], Bose-
Einstein condensate arrays [4,5,6], polaronic effects in biomolecular processes,
and local (stretching) modes in molecules and molecular crystals (see [1,7,8]
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and references therein). Discrete Non-Linear Schrödinger equations (NLS lat-
tices for short) provide the theoretical description of these systems, where
pulse-like (self-localized) states are observed.

The standard Discrete Nonlinear Schrödinger (DNLS) equation is the (sim-
plest) discretization of the one-dimensional continuous Schrödinger equation
with cubic nonlinearity in the interaction term, i.e.,

iΦ̇n = −(Φn+1 + Φn−1) − γ|Φn|
2Φn , (1)

where Φn(t) is a complex function of time. The first term on the right takes
account of the dispersion and the second of the nonlinearity, the parameter γ
is the ratio between them. For the Bose-Einstein condensate lattices dealt with
in [4,5,6] one can think of Φn as the boson condensate wavefunction in the n-th
(optical) potential well, and γ would thus be related to the so-called s-wave
scattering length [9]. The self-focussing effect of local nonlinearity balanced by
the opposite effect of the dispersive coupling makes possible the existence of
localized boson states in the Schrödinger representation of the condensate lat-
tice (Gross-Pitaevskii equation). In a localized state (discrete breather) of the
boson lattice the profile of |Φn|

2 decays exponentially away from the localiza-
tion center. These solutions have an internal frequency, Φn = |Φn| exp(iωbt),
so that the discreteness is essential to avoid resonances with the phonon band
and keeping localized the energy. Pinned (immobile) localized solutions of eq.
(1) have been rigorously characterized [10] and extensively studied by highly
accurate numerical [11] and analytical approximations. However, for exact
mobile discrete breathers no rigorous formal proof of existence in standard
DNLS is available nowadays although lot of works have studied these kind of
solutions (see e.g. [12,13,14,15]).

The translational motion of discrete breathers introduces a new time scale
(the inverse velocity) into play, so generically a moving breather should excite
resonances with the plane wave band expectra. In a hamiltonian system, these
radiative losses would tend to delocalize energy and some compensating mech-
anism is needed in order to sustain exact stationary states of breather trans-
lational motion. To address the problem we use unbiased (i.e. not based on
ansatze on the expected functional form of the exact solution) and precise nu-
merical methods which allow observations of numerically exact non-integrable
mobility, paving the way to further physical (and mathematical) insights.

In this letter, after explaining in section 2 the basis of the numerical method
(fixed point continuation from the integrable Ablowitz-Ladik limit [16]) and
its relevant technical details briefly, we will discuss the structure of the discrete
NLS breathers in 3. They are found to be the exact superposition of a travelling
exponentially localized oscillation (the core), and an extended “background”
built up of finite amplitude plane waves A exp[i(kn − ωt)]. These resonant
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plane waves fit well simple (thermodynamic limit) predictions based on dis-
crete symmetry requirements. Finally in section 4 we show how the resonant
background is seen to be an indispensable part of the solution. In this regard we
present the mechanism through which the interaction core-background com-
pensates the variations of the core energy (no longer an invariant of motion
away from the integrable limit), during the translational motion.

2 Salerno Model and Continuation Method

The method used here makes use of the following NLS lattice, originally in-
troduced by Salerno [17],

iΦ̇n = −(Φn+1 + Φn−1)
[

1 + µ|Φn|
2
]

− 2νΦn|Φn|
2 . (2)

This lattice, though non-integrable for ν 6= 0, provides a Hamiltonian interpo-
lation between the standard DNLS equation (1), for µ = 0 and ν = γ/2, and
the integrable Ablowitz-Ladik lattice [16], A-L for short, when µ = γ/2 and
ν = 0. The A-L model is a remarkable integrable lattice possessing a family
of exact moving breather solutions:

Φn(t)=

√

2

γ
sinh β sech[β(n − x0(t))] exp[i(α(n − x0(t)) + Ω(t))], (3)

the two parameters ωb and vb are the breather frequency and velocity

ωb ≡ Ω̇(t) = 2 cosh β cos α + αvb , vb ≡ ẋ0(t) =
2

β
sinh β sin α (4)

where −π ≤ α ≤ π and 0 < β < ∞. The equation (2) has the following
conserved quantities, namely the Hamiltonian H and the norm N :

H =−
∑

n

(ΦnΦn+1 + ΦnΦn+1) − 2
ν

µ

∑

n

|Φn|
2 + 2

ν

µ2

∑

n

ln(1 + µ|Φn|
2) (5)

N =
1

µ

∑

n

ln(1 + µ|Φn|
2) (6)

where Φn denotes the complex conjugate of Φn. In what follows we will fix the
value γ = 2 in eq. (1) and µ + ν = 1 in eq. (2), as usual.

Perturbative inverse scattering transform [18], as well as collective coordinate
methods [19,2,20], have been used to study moving breathers of the Salerno
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equation (2) near the integrable A-L limit (ν ≃ 0). The numerical procedure
that we explain below has the advantage of being unbiased and not restricted
to small values of the non-integrability parameter ν, at the expense of restrict-
ing attention to those solutions (3) which are resonant, meaning that the two
breather time scales are commensurate 2πvb/ωb = p/q (rational time scales
ratio). A resonant (p/q) moving breather Φ̂n(t) is numerically represented as
a fixed point of the map M = LpT q, where L is the lattice translation oper-
ator L({Φn(t)}) = {Φn+1(t)}, and T is the Tb-evolution map (Tb = 2π/ωb),
T ({Φn(t)}) = {Φn(t + Tb)}; explicitly

Φ̂n(t) = Φ̂n+p(t + qTb) for all n (7)

Let us briefly present the numerical method. The implicit function theorem
[21] ensures a unique continuation of a fixed point solution of M for parame-
ter (ν) variations, provided the Jacobian matrix J = D(M − I) is invertible:
with this proviso the Newton method [22] is an efficient numerical algorithm
to find the uniquely continued fixed point. In other words, continuation from
a resonant A-L breather along the Salerno model is possible if one restricts
the Jacobian matrix J to the subspace orthogonal to its center (null) sub-
space. The center subspace turns out to be spanned by two continuous sym-
metries of the Salerno model, namely, time translation and gauge (uniform
phase rotation) invariances. Using Singular Value Decomposition (SVD) tech-
niques [23], one then obtains numerically accurate continued resonant moving
breathers along the Salerno model until conditions for continuation cease to
hold. A (SVD)-regularized Newton algorithm was already used by Cretegny
and Aubry in [12] to refine moving breathers of Klein-Gordon lattices with
Morse potentials obtained by other means. From the methodological side
what is novel here is the systematic use of it in order to obtain the family
of moving Schrödinger breathers of the NLS lattice (2), for different values of
2πvb/ωb = 0, 1/2, 3/4, 1, ... and a fine grid of frequency values ωb and the
nonintegrability parameter ν.

3 Mobile Discrete Breathers

Let first start with a few remarks on immobile breathers (p = 0). Some non-
integrable issues, that affect mobile solutions, can be shown continuing the
immobile ones along the Salerno Model (ν = 0,. . . , 1). First we remark that
the uniquely continued solution of standard DNLS (ν = 1) is equal to the
pinned discrete breather uniquely continued from the anticontinuous limit
(γ → ∞) [10]. Second, only inmobile breathers which are centered either at
a site (n) or at a bond (n ± 1/2) persist; this is due to the emergence of
Peierls-Nabarro barriers away from integrability (ν 6= 0), a well-known result
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of collective variable theory [2,20]. The breather centered at a site is stable
while the one centered at a bond is unstable [2,24]; its energy difference is
the Peierls-Nabarro barrier. This energy difference acts as a barrier to mobile
breathers for travelling along the lattice; the numerical computations of this
barrier nicely fit with collective variable predictions.

Our main interest, however, focusses on mobile solutions, i.e. p 6= 0. How
are Peierls-Nabarro barriers to mobility overcome by the fixed point solution?
Our results show clearly that the uniquely continued p/q-resonant fixed point
for ν 6= 0 is spatially asymptotic to an extended background, whose amplitude
increases from zero (at ν = 0) with increasing non-integrability ν, superposed
to the moving (A-L)-like core, see figure (1). In order to reveal the structure
of this extended background, we have to pay attention to spatially extended
solutions of the Salerno model.
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Fig. 1. Instantaneous profile of a 1/1 breather with ωb = 4.909 and vb = 0.7813.
Real part (a), imaginary part (b), modulus (c) and phase (d). The nonintegrability
parameter in (2) is ν = 0.05.

The Salerno equation (2) admits extended solutions of the plane wave form,
Φn(t) = A exp[i(kn − ωt)], provided the following (nonlinear) dispersion rela-
tion holds:

ω = −2[1 + (1 − ν)|A|2] cos k − 2ν|A|2 (8)

A p/q-resonant plane wave satisfies Φn(t) = Φn+p(t + qTb), and therefore, for
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a p/q-resonant plane wave the following condition also holds:

ω

ωb

=
1

q

(

p

2π
k − m

)

(9)

m being any integer. Equations (8) and (9) can be solved for k and one obtains
a finite number of branches kj(|A|) of p/q-resonant wavenumbers in the first
Brillouin zone, −π ≤ kj ≤ π. The simplest case of a unique branch for fixed ν
(as well as ωb and p/q) and A small, is represented in a) and b) of figure (2).
For example, for A small and ωb > 4, for any value of 0 < ν < 1 and A, there
is a unique 1/1-resonant wavenumber branch k0(ν, A).

For the general situation where several branches kj (j = 0, . . ., s − 1) of
resonant plane waves solve (8) and (9), the power spectrum of a background
site n, S(ω) = |

∫

∞

−∞
ℜ(Φn(t)) exp[iωt]dt |2, reveals s peaks at the values ωj

corresponding to the resonant wavevector branches. The background is, up to
numerical accuracy, a linear superposition of p/q-resonant plane waves, namely

s−1
∑

j=0

Aj exp[i(kjn − ωjt)]

The amplitudes Aj differ typically orders of magnitude, i.e. |A0| ≫ |A1| ≫
|A2|. . ., so that only a few frequencies are dominant, for most practical pur-
poses. One would speak of localization in k-space to describe the extended
background of the p/q-resonant fixed point. Once the values of ωb, vb and ν
are given, the “selection rule” provided by equations (8) and (9), does not de-
termine directly the resonant wavenumbers kj, but only branches kj(A). This
reflects the inherent nonlinearity of the NLS lattice, wherefrom the frequency
of the plane wave depends on both wavenumber and amplitude in equation
(8). Along the parametric continuation path the fixed point “adjusts” the
planewave content (kj) of the background, so that it remains p/q-resonant
under the changes in the amplitudes of the background plane waves (Aj).

4 Background relevance to Mobility

Along the Newton continuation path to the standard DNLS equation the
background amplitudes have a monotone increasing behavior with ν, see fig-
ure (3.a). High frequency solutions cannot be continued up to that limit,
and the continuation stops for values of ν < 1. This result correlates well
with the collective variable (particle perspective) predictions [19,25] where the
non-persistence of travelling solutions is related to the growth of the Peierls-
Nabarro barrier. In this respect, one observes a sudden increase in the back-
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Fig. 2. Power Spectrum. (a) S(ω) for the background of a 1/1 breather with
ωb = 5.057 at ν = 0.05. In (b) formula (9) gives the contribution of a unique
phonon (j = 0) with which agrees (eq. (8)) with results given by S(ω). (c) S(ω) for
the background of a 1/2 breather with ωb = 2.3842 at ν = 1.00. In (d) formula (9)
gives the contribution of seven phonons (j = 0, .., 6), but only five of them (0 − 4)
are visible on S(ω). Note that the amplitudes |Aj | differ by orders of magnitude.

ground amplitude near the continuation border. This result reinforces the
interpretation of the background as an energy support to the core for sur-
passing the (nonintegrable) Peierls-Nabarro barriers to mobility, and so its
unavoidable presence for the existence of mobile breathers in the absence of
integrability.

The role of the background in the localized core mobility can be analysed as
follows. As the solution is unambiguosly found to be Φ̂ = Φ̂core + Φ̂bckg, the
energy H , equation (5), of a mobile breather can be written as

H = H [Φ̂core] + H [Φ̂bckg] + H int (10)

where H int is the interaction energy, i.e. the crossed terms of Φ̂core and Φ̂bckg

in the Hamiltonian. In the simplest case in which the background has a single
resonant plane wave, its energy is a constant of motion (along with the total
energy), so one obtains

∂H [Φ̂core]

∂t
= −

∂H int

∂t
(11)
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Fig. 3. (a) Background amplitude of different 1/1 resonant breathers as a function
of the nonintegrability ν. The amplitudes are zero in the A-L integrable limit (ν = 0)
and have a monotone increasing behavior with ν. The value ν = 1 corresponds to
the standard DNLS equation. (b) Plot of Hcore of a 1/1 resonant breather with
ωb = 5.056 as a function of the localization center x0 for different values of ν (0.04,
0.08, 0.12, 0.16, 0.20, 0.24, 0.25 and 0.2512 (end of the continuation)). The amplitude
of the oscillation of Hcore grows with ν. (The minimum value of Hcore has been set
to zero in order to compare the differents functions.)

i.e. the variations of the core energy along the motion are balanced by the vari-
ations in the core-background interaction energy. Equation (11) dictates the
dynamics of any (eventual) effective (collective) variables intended to describe
the mobile core in a particle-like description of the breather.

One can compute the core energy variations directly from the numerical inte-
gration of a solution by substracting (at each time step) the background from
it. In figure (3.b) we plot the evolution of the core energy as a function of the
core localization center, x0, defined by using the norm N (equation (6)) of the
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Salerno model (2) as

x0 =

∑

n n ln(1 + µ|Φcore
n |2)

µN
. (12)

One observes that the core has extracted the maximum energy from the in-
teraction term when the core passes over x0 = n ± 1/2 (maxima of the PN
barrier) and has given it back to the interaction term at x0 = n (minima of
the PN barrier). The bigger the PN barrier, the larger the interaction term
(directly proportional to background amplitude) is. This result illustrate the
role of the resonant background on the core mobility and the interpetation of
its amplitude increase with ν. The increase of nonintegrability, and the subse-

quent growth of the PN barrier, demands aditional support of energy from the

interaction term, which is achieved by an increase of the background amplitude.

5 Conclusions

We have used a (SVD)-regularized Newton algorithm to continue mobile dis-
crete breathers in the Salerno model from the integrable Ablowitz-Ladik limit.
Our results indicate that, away from integrability, a description of these so-
lutions based exclusively on localized (collective) variables is incomplete. The
solutions are composed by a localized core and a linear superposition of plane
waves, the background, whose amplitudes differ orders of magnitude. The
background plays an important role in the translational motion of the local-
ized core. Exact mobile localization only exist over finely tuned extended states
of the nonlinear lattice. Mobile “pure” (i.e. zero background) localization must
be regarded as very exceptional (integrability).
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